Properties of excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat prefrontal cortex.

نویسندگان

  • N V Povysheva
  • G Gonzalez-Burgos
  • A V Zaitsev
  • S Kröner
  • G Barrionuevo
  • D A Lewis
  • L S Krimer
چکیده

In the prefrontal cortex (PFC) during working memory tasks fast-spiking (FS) interneurons might shape the spatial selectivity of pyramidal cell firing. In order to provide time control of pyramidal cell activity, incoming excitatory inputs should excite FS interneurons more vigorously than pyramidal cells. This can be achieved if subthreshold excitatory responses of interneurons are considerably stronger and faster than those in pyramidal neurons. Here we compared the functional properties of excitatory post-synaptic potentials (EPSPs) between pyramidal cells and FS interneurons in slices from monkey dorsolateral PFC and rat prelimbic cortex. Miniature, unitary (in connected pairs or by minimal stimulation) and compound (evoked by electrical stimulation of the white matter) EPSPs were recorded in whole cell mode. We found that EPSPs were significantly larger and faster in FS interneurons than those recorded from pyramidal cells, consistent with the idea of more efficient recruitment of FS interneurons compared to pyramidal neurons. Similar results were obtained in monkey and rat PFC, suggesting a stable role of FS interneurons in this circuitry across species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

JN-00787-2004 Functional properties of fast spiking interneurons and their synaptic connections with pyramidal cells in primate dorsolateral prefrontal cortex

Recent studies suggest that fast-spiking (FS) interneurons of the monkey dorsolateral prefrontal cortex (DLPFC) exhibit task-related firing during working memory tasks. To gain further understanding of the functional role of FS neurons in monkey DLPFC, we described the in vitro electrophysiological properties of FS interneurons and their synaptic connections with pyramidal cells in layers 2/3 o...

متن کامل

Functional properties of fast spiking interneurons and their synaptic connections with pyramidal cells in primate dorsolateral prefrontal cortex.

Recent studies suggest that fast-spiking (FS) interneurons of the monkey dorsolateral prefrontal cortex (DLPFC) exhibit task-related firing during working-memory tasks. To gain further understanding of the functional role of FS neurons in monkey DLPFC, we described the in vitro electrophysiological properties of FS interneurons and their synaptic connections with pyramidal cells in layers 2/3 o...

متن کامل

Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2-3 of monkey dorsolateral prefrontal cortex.

In primates, little is known about intrinsic electrophysiological properties of neocortical neurons and their morphological correlates. To classify inhibitory cells (interneurons) in layers 2-3 of monkey dorsolateral prefrontal cortex we used whole cell voltage recordings and intracellular labeling in slice preparation with subsequent morphological reconstructions. Regular spiking pyramidal cel...

متن کامل

Selective suppression of excitatory synapses on GABAergic interneurons by norepinephrine in juvenile rat prefrontal cortical microcircuitry.

The noradrenergic system of the brain is thought to facilitate neuronal processes that promote behavioral activation, alertness, and attention. It is known that norepinephrine (NE) can be significantly elevated in the prefrontal cortex under normal conditions such as arousal and attention, and following the administration of psychostimulants and various other drugs prescribed for psychiatric di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 16 4  شماره 

صفحات  -

تاریخ انتشار 2006